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1. Evaluate ∫ 1

0

{
1
x

}2

dx,

where {α} = α− bαc denotes the fractional part of α.

Answer: ln(2π)− γ − 1, where γ is Euler’s constant.

Proof. We remark that the integral exists because 0 ≤ {1/x}2 ≤ 1 for all x ∈ (0, 1]. Fix a positive integer
N and consider ∫ 1

1/N

{
1
x

}2

dx.

Substituting x 7→ 1/x gives ∫ 1

1/N

{
1
x

}2

dx =
∫ N

1

{x}2

x2
dx.

For each positive integer k, if k ≤ x < k + 1 then {x} = x− k. Therefore,∫ N

1

{x}2

x2
dx =

N−1∑
k=1

∫ k+1

k

(x− k)2

x2
dx =

N−1∑
k=1

(
2− 1

k + 1
− 2k ln(k + 1) + 2k ln k

)
.

Note that
N−1∑
k=1

2 = 2N − 2 and
N−1∑
k=1

−1
k + 1

= − lnN − γN + 1,

where γN → γ as N →∞. Furthermore,

N−1∑
k=1

−2k ln(k + 1) + 2k ln k = −2
N−1∑
k=1

[(k + 1) ln(k + 1)− k ln k] + 2
N−1∑
k=1

ln(k + 1) = −2N lnN + 2 ln(N !).

From Stirling’s approximation

N ! =
√

2πN
(
N

e

)N
eθN

(where θN → 0 as N →∞), we have

2 ln(N !) = 2N lnN − 2N + ln(2πN) + 2θN .

Altogether,
N−1∑
k=1

(
2− 1

k + 1
− 2k ln(k + 1) + 2k ln k

)
= ln(2π)− γN − 1 + 2θN .

This gives ∫ 1

1/N

{
1
x

}2

dx = ln(2π)− γN − 1 + 2θN ,

and taking N →∞ gives ln(2π)− γ − 1.



2. Evaluate
∞∑
k=2

ζ(k)− 1
k

.

Answer: 1− γ, where γ is Euler’s constant.

Proof. Call the sum S. Insert the series definition for ζ and note that
∑∞
n=1 n

−k − 1 =
∑∞
n=2 n

−k to get

S =
∞∑
k=2

∞∑
n=2

1
knk

.

These terms are all positive, so an application of Tonelli’s theorem (equally applicable to both sums and
integrals) gives

S =
∞∑
n=2

∞∑
k=2

1
knk

.

Recognize the series for the logarithm:

− ln
(

1− 1
n

)
=
∞∑
k=1

1
knk

.

Thus

S =
∞∑
n=2

[
− ln

(
1− 1

n

)
− 1
n

]
=
∞∑
n=2

[
lnn− ln(n− 1)− 1

n

]
Take a large positive integer N ; we can telescope to get

N∑
n=2

[
lnn− ln(n− 1)− 1

n

]
= lnN −HN + 1,

where we use the notation HN = 1 + 1/2 + 1/3 + · · ·+ 1/N . It is well known that HN = lnN +γ+O(1/N),
so

S = lim
N→∞

(lnN −HN + 1) = lim
N→∞

(1− γ +O(1/N)) = 1− γ,

as claimed.

3. Evaluate
∞∑
n=0

(
2n
n

)−1

.

Answer: 4/3 + 2π
√

3/27

Proof. There are many approaches—using arcsine, using hypergeometric functions, etc.—but we’ll use the
gamma and beta functions. Define the functions

Γ(n) =
∫ ∞

0

tn−1e−t dt and B(x, y) =
∫ 1

0

tx−1(1− t)y−1 dt.

It is easy to check (via integration by parts and mathematical induction) that Γ(x+ 1) = xΓ(x) in general
and that Γ(n) = (n− 1)! for integers n. Furthermore,

B(x, y) =
Γ(x)Γ(y)
Γ(x+ y)

,

which follows from simple manipulation of the integrals. Altogether, we have(
2n
n

)−1

=
(n!)2

(2n)!
=

Γ(n+ 1)2

Γ(2n+ 1)
=

(2n+ 1)Γ(n+ 1)2

Γ(2n+ 2)
= (2n+ 1)B(n+ 1, n+ 1).



Written in terms of the integrals,

∞∑
n=0

(
2n
n

)−1

=
∞∑
n=0

(2n+ 1)
∫ 1

0

tn(1− t)n dt =
∞∑
n=0

∫ 1

0

(2n+ 1)(t− t2)n dt.

For t ∈ [0, 1] and n ≥ 0, we have (2n+ 1)(t− t2)n ≥ 0, so the monotone convergence theorem gives

∞∑
n=0

(
2n
n

)−1

=
∫ 1

0

∞∑
n=0

(2n+ 1)(t− t2)n dt.

The sum can be evaluated by differentiating the geometric series:

∞∑
n=0

xn =
1

1− x
=⇒

∞∑
n=0

nxn =
x

(1− x)2
,

so we have
∞∑
n=0

(
2n
n

)−1

=
∫ 1

0

1 + t− t2

(1− t+ t2)2
dt.

This integral can be evaluated to get the answer of 4/3 + 2π
√

3/27.

4. Let R be a nice region in R2 containing the origin and p be the Green function of R with singularity at
zero. Assume that ∂R moves with normal velocity given by V = ∂p/∂n (with p changing so that it remains
the Green function of R). Given a harmonic function h, prove that

d

dt

∫∫
R

h dA = h(0).

Proof. The following is a kinematic relation for any such moving region; its proof can be found in most
books on fluid mechanics.

d

dt

∫∫
R

h dA =
∮
∂R

hV ds.

Since V = ∂p/∂n = ∇p · n, this becomes

d

dt

∫∫
R

h dA =
∮
∂R

h∇p · dn,

a 2D flux integral. To proceed, we use Green’s first identity:∫∫
R

(h∆p− p∆h) dA =
∮
∂R

(h∇p− p∇h) · dn.

To verify this, simply use the divergence theorem and product rule on the right-hand side of the equation.
Since ∆h = 0 and p = 0 on ∂R, Green’s identity reduces to∫∫

R

h∆p dA =
∮
∂R

h∇p · dn =
d

dt

∫∫
R

h dA.

Finally, by definition of the Green function, the area integral on the left is simply h(0).

5. Learn about Stokes’ theorem for C: ∫∫
R

∂f

∂z̄
dz̄ ∧ dz =

∮
∂R

f dz

and use it to prove the Cauchy integral theorem. Discuss.



Proof. Literally an entire book can be written for this. We’ll just stick to the basics; from Stokes’ theorem
for differential forms, ∮

∂R

f dz =
∫∫

R

d(f dz) =
∫∫

R

∂f

∂z̄
dz̄ ∧ dz +

∂f

∂z
dz ∧ dz︸ ︷︷ ︸
=0

The requirements on R and f are that f must be continuously differentiable and R must have a bound-
ary with continuously differentiable parametrization. A basic result in complex analysis is that complex
differentiable functions f must satisfy ∂f

∂x = −i∂f∂y . In terms of z̄, this is equivalent to

∂f

∂z̄
=

1
2

(
∂f

∂x
+ i

∂f

∂y

)
= 0.

So if f is complex differentiable (nontrivially, this is equivalent to ‘analytic’ when dealing with C), then

0 =
∫∫

R

∂f

∂z̄
dz̄ ∧ dz =

∮
∂R

f dz.

This is the Cauchy integral theorem. Cauchy’s theorem can actually be proved without requiring that f
be continuously differentiable, but that requires an entirely different approach.


